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EFFECT OF UNIFORM LONGITUDINAL STRAIN RATE ON WEAK
HOMOGENEQUS TURBULENCE IN A COMPRESSIBLE FLOW
by Robert G. Deissler

TLewis Research Center

SUMMARY 2260 7

Two-point correlation equations for turbulence with a uniform strain rate
in one direction are constructed by starting with the compressible Navier-
Stokes and continuity equations. Compressibility is retained in the mean flow,
but the problem is simplified by assuming that the turbulent eddies behave in-
compressibly. In order to close the system of equations, the weak turbulence
approximation (triple correlations neglected) is used. The equations are con-
verted to spectral form by taking their Fourier transforms. Solutions are ob-
tained for the turbulent velocity variances in the longitudinal and transverse
directions and for the spectra of those quantities. The transverse turbulent
intensity (square root of variance over local mean velocity) varies in a com-
plex manner that seems to approximate experimental heat transfer results in
highly heated tubes.

A transfer term associated with the mean strain rate is found to transfer
energy to either higher or lower wave numbers, depending on whether the strain
rate is negative or positive. Because of this energy transfer the peaks of the
energy and dissipation spectra are widely separated for large negative rates of
strain, even though triple correlations have been neglected; however, there is

still considerable overlap of the two spectra. %//

INTRODUCTION

One problem of considerable interest in the theory of turbulent flow is
the effect of a mean strain on the turbulence. Since the strain is accompanied
by a velocity change in the flow direction, this effect is sometimes called an
effect of acceleration. The case of turbulence with a suddenly applied mean
strain, in which viscous and inertia effects produced by the turbulence are
negligible, was considered, for instance, by Prandtl (ref. 1), Taylor (ref. 2),
Ribner and Tucker (ref. 3), and Batchelor and Proudman (ref. 4). A different
approach wherein viscous effects are retained and inertia effects are neglected
only insofar as they affect triple correlations was used by Pearson (ref. 5).
Two-point correlation equations in which uniform mean strain rates are in-
cluded were obtained from the incompressible Navier-Stokes and continuity equa-
tions.



In the preceding analyses, a strain in the flow direction was accompanied
by transverse strain, as in the distortion produced by a sudden stream con-
traction. The problem analyzed herein, on the other hand, considers the tur-
bulence in a stream of uniform cross section, in which a uniform rate of strain
is produced in the flow direction by density changes. This type of strain
might be of importance in connection with heat transfer to or from a gas stream
at high fluxes or in a flow with heat liberating or absorbing chemical reac-
tions. The model might be closely approximated in an experiment in which a
number of very small heated or cooled tubes run longitudinally in the stream.
The turbulence would be initially produced by flow of the stream through a
grid, and the effect of the strain rate on the decay of the turbulence would
be studied.

The analysis starts from the compressible Navier-Stokes and continuilty
equations. From those equations two-point correlation equations for turbulence
with a uniform mean rate of strain in one direction are obtained. Compressi-
bility must, of course, be retained in the mean flow, but density fluctuations
are neglected and the turbulent eddies are assumed to obey the incompressible
continuity equation. The required correlation equations will be obtained in
the following section.

BASIC EQUATIONS

The compressible Navier-Stckes and continuity equations for a constant-
viscosity gas are usually written as follows:

p(st—”k&;;)“&%*gsx—i&gwwkxk (1)
and
d 0 ~
St 3 (Plk) = O (2)

where the subscripts can take the values 1, 2, or 3. A repeated subscript in
a term indicates a summation of terms, with the subscripts successively taking
on the values 1, 2, and 3. The guantities U; and Ui are instantaneous
velocity components, x4 1s a space coordinate, t 1is the time, p 1is the
density, u 1is the viscosity, and p 1is the instantaneous pressure. (All
symbols are defined in the appendix.)

Equations (1) and (2) give
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The instantaneous velocities and pressure in equations (3) and (2) can be
broken into mean and fluctuating components. Set U; = Uj + uy, and

P = P + p, where the capitalized symbols refer to mean quantities, and the
lower case symbols refer to fluctuations. Density fluctuations are neglected.




If averages are taken and the averaged equations are subtracted from the un-
averaged ones,
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Since continuity is satisfied for the mean as well as for the unaveraged flow,
equation (2) becomes

%% + % (pUy) = 0 (5)

Then, from equations (2) and (5),
d
S (Pugc) = 0 (6)

Also, since fluctuations are assumed to behave incompressibly, the incompressi-
ble continuity equation is used:

gkzo (7)

Comparison of this equation with equation (6) indicates that its use implies
that changes in mean density are small over the distance for which a velocity
fluctuation occurs. This distance can also be considered as the mixing length
or scale of the turbulence or the distance over which velocities are appre-
ciably correlated. Equation (7) allows dropping of the last term in equa-
tion (4). Use of equations (5) and (6) then gives

duy U4 duy B(Quiuk) S puguy) d d%uy
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Equation (8) applies at a point P in the fluid. At another point P' sepa-
rated from P by the vector 7 (see fig. l),
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If equation (8) is multiplied by p'uj and equation (9) by puj, the
two equations are added, and average values are taken,
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Figure 1. - Vector configuration for two-point

correlation equations.
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where the fact that quantities at one point are
independent of the position of the other point has
been used. As mentioned previously, use of the
incompressible continuity equation for the fluctu-
ations (eq. (7)) implies that changes in mean den-
sity are small over the distance for which ve-
locities are correlated. Therefore, p' 1is re-
placed by p, and in that way a considerable
simplification in equation (10) is obtained. Also,
the turbulence is assumed to be weak enough for
tripie correlations to be neglected. Equation

(lO) then becomes, on 1ntroduc1ng the new vari-
ables 1 = x} - x and (x )y = (1/2)(x + x3t)
(see fig. 1),
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where the following transformations were used:
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For the problem considered herein, the velocity gradient (strain rate) in the
x1-direction dUl/dxl is uniform, and the other velocity gradients are zero.
Also, it is shown in reference 6 that the effects of inhomogeneities on the
decay of the turbulence downstream of a grid are, for cases of practical in-
terest, usually negligible. Equation (11) then becomes, for steady state at a
given distance downstream from the turbulence generator,
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where (U + Ui)/z was replaced by (Up) , the value of Uy at (x7) , and 813
is the Kronecker delta. n m

The pressure-velocity correlations are next considered. Taking the
divergence of equation (4) and using equations (6) and (7) give

32 ~ Bz(pUiuk) Bz(puiuk) . Bz(puiuk) (15)
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Since the mean flow is in the xj-direction and changes only in the xq-
direction, the first term on the right side of equation (13) becomes, with the
use of equations (5) and (7) and the assumption of steady state,

22 o(pU;) PN o(pU;) o
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Multiplying equation (13) by uj, averaging, and introducing the variables
(Xi)m and r; then give, for weak turbulence,

1
2= 2 27T
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Equation (14), however, is the same as equation (12) in reference 6. As in
that reference puj is assumed to be zero at an initial (xl)m. This assump-

tion is consistent with an assumption to be made later that the turbulence is
initially isotropic. In the preceding reference puj is shown to be zero

throughout the field if it is zero at an initial (xl)m; that is, the dynamics
of the turbulence will not cause nonzero values of pu! to arise. Similarly,

there will be no inconsistencies in also taking usp' to be zero. Equation
(12) then becomes
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In order to simplify the notation, let

(Ul)m =y and (xl)m =
By continuity,
or
Pele
P="90 (16)
Also,
U (17)

where the subscript g designates the plane where = 0 which, as usual, is
taken as the plane of the grid. If

W1
S=8q=yx (18)
U
= ?§-+ x (19)
and
_ M
V=
g
equation (15) becomes
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Equation (20) is the correlation equation for u1 J It can be converted to
spectral form by introducing the three-dimensional Fourier transform @lJ de-

fined by
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where dK = dkq dKgy dKsz. Then,

oy _ 91 RE
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Taking the Fourier transform of equation (20) results in

P 4 U U U P ;
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If X/U is interpreted as a time, the terms on the right side of equa-
tion (23) give the contributions of various processes to the time rate of
change of ®;;. The last term is, of course, the usual dissipation term. The
next to the last term can be interpreted as a transfer term, for if ¥ = 0 in
equation (22), the quantity (kp a@ij/axl) *+ 915, when integrated over wave

number space, gives zero contribution to the rate of change of Uiy It can,

however, transfer energy between wave numbers. This process is similar to that
previously discussed in connection with shear-flow turbulence (ref. 6). The
remainder of the terms on the right side of equation (23) can evidently be
interpreted as production terms. Both the production and transfer terms drop
out of the equation when there is no strain, since X goes to infinity when

s goes to zero (eq. (19)).

SOLUTION OF SPECTRAL EQUATION

Equation (23) is a first-order equation and can be solved by available
methods (see ref. 7). For @77, the component of ¢ij in the direction of
mean strain,

£(k1X) vk (2 2 2
Ppq = —— exp [; (Kl - Ko = KS) (24)
g
where f(KIX) is a function of integration that depends on initial conditions.
In order to evaluate f it is assumed that the turbulence is isotropic at
X = Xp (but not at other values of X). This assumption implies that, for

weak turbulence,

(p..) = 7o (KZB.. —K.K.) (25)
1% 12q2 g 1

where Jgp 1is a constant (see ref. 6, eq. (43)). This equation is in agreement



with the work of Batchelor and Proudman (ref. 8). Evaluation of f in equa-
tion (24) by substituting equation (25) at X = Xo gives

2
J 2vXn | (K1XH)
0
£(K1Xg) = Xg 2(K§+K§)exp_ UO 120 KB - k2
2n g X2
0
or
2~ 2
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0 2 2 0 [™1 2 2
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Then
J U _ + sx K X - X
0 g 0,25 2 2v o 1 0
e = (K2 - k2)expd-2¥ k2(x - x.)|1 + %) —— (26)
11 1272 Ug + 8% 1 Ug 0 K Ug + sXxg

where the definition of x (eq. (19)) was used. Similarly, Ppps & component
normal to the direction of mean strain, is

J. U + sx U + sx 2
lzﬁz Ug SXg Ug + SXg

2
2v 2 + of51) X - X0
X exp{- ﬁ; K“(x - xp) [l s(%F> 52777?555 (27)

Because of axial symmetry, ®zz 1s of the same form as Poo and need not be
consldered separately.

In order to integrate over wave number space, it is convenient to intro-
duce spherical coordinates as follows:

Ky = K cos 6
Ko = K cos @ sin 6 (28)
Ky = K sin ¢ sin 6

Equation (21) then becomes, for T = O,

[e o]
ujuy = ,{ Vi Ak (29)




where

2an
- 2.4
¥y = [.{ 9;,Fsin 6 dp do (320)

The quantity wij is the spectrum tensor as defined by Batchelor (ref. 9).

In calculating i and ug it is convenient to carry out the integration

with respect to ¢, K, and 6 in that order. Then, from equations (26)

to (30),
2 Jo Ug/V 5/2 Ug + 85X 5/2 :
17 4 fan \x - %o) \Tg ¥ sx 31)
and
Eg _ ;g _ Jo Ug/v 5/2 [s(x + xp) + 2Ug](Ug + sx)1/2 (52)
48'\[2? X - X 2(Ug + SXO)S/Z

For the spectra of the velocity variances there is, in dimensionless form,

*2
bk¥e—2K
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for a > 0 and

* _ bKexp[-2672(1 + a)] [4ak™% - 1 —  x *
Vi = = ey F(-,/ 2a K ) + K (35)
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for a < 0, where
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Values of F(w) are tabulated, for instance, by Miller and Gordon (ref. 10).

The transfer term in the spectral equation (the next to the last term in
eq. (23)) can be integrated over all directions in wave number space by re-
placing (Pij in equation (30) by that term. The longitudinal component of the

integrated transfer term is, then, in dimensionless form,

M bi*e=2K 2 [1qi¥2 _ 3 * *_-2aK e *
)= - Toma . “ena erf(k"+/2a) + 3" e + abyy, (43)

for a >0 and

3 bk* expl -2K*2(l + a)] 4aK"2 - 3 * {l *
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for a < 0, where

10




N ve(x - XO)BS

Ty7 =

T (45)
2 11
JOUg(Ug + sx)

A discussion and plotting of the results for the various spectra and velocity
variances will be given in the followilng section.

DISCUSSION
Velocity Variances

—

The velocity variances E{, EE, and uz are given by equations (31) and
(32). For zero strain (s = 0) these expressions reduce to the usual expression
for isotropic turbulence in the final period, if (x = XO)/Ug =t -ty. In
order to plot equations (31) and (32) for s # O, the sign of xg must be
known. It appears that xp must always be negative, since equations (51) and
(32) indicate that the point x = xg represents a virtual origin for the tur-
bulence, where the energy is infinite. Since the grid at x = 0 can produce
only a finite turbulent energy, the virtual origin must lie upstream of the
grid, or Xy must be negative.

Dimensionless plots of equations (31) and (32) are presented in figure 2
for two values of x*. The velocity variances at a given x with strain are
divided by their values at the same position without strain, with the mean __
velocity set at Ug. For positive strain rates the longitudinal component u%
(in the direction of strain) is reduced below the value it would have for no
strain, whereas the transverse components are increased. These results are
qualitatively similar to those obtained for a sudden contraction in an incom-
pressible flow (see ref. 9). TFor negative strain rates the opposite trends
occur; that is, the longitudinal component is increased by the strain, whereas

the transverse components are decreased. The total energy uiui/2==(u§4-2u%)/2

is increased by both positive and negative strain rates; that is, positive and
negative strain rates both feed net energy into the turbulent field but through
different components.

As s°% approaches -1 (or sx - -Ug), ui and thus wujuy grow in-

definitely large (see eg. (31)). The symbols s* and x are defined in
figure 2. The point sx = -Ug represents the condition where the fluid is
compressed into zero volume and is, of course, unattainable.

For values of sx somewhat larger than -Ug, however, the magnitudes of

u% and uju; still increase rather than decay as x increases, or the energy

fed into the turbulent field by the negative straining action is greater than
that dissipated. It can be shown from equation (31) that the region in which

ui increases with x 1is given by -1/x < s* < -(5/8)/[x" + (3/8)].

Calculating the square of the transverse turbulent intensity EEVUZ,
where U is the local mean velocity, is of some interest. In a sudden con-

11
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Figure 2, - Ratio of velocity variances with strain to those without strain as
function of dimensionless mean strain rate,

traction, results for an incompressible flow indicate that, although ug in-

creases, ug/U2 decreases through the contraction because of the increase in

U (ref. 9). In the case presented herein it is desired to calculate

(u2 at

x with strairj!(Uz at x with strain)

(ug at x without strain and with U = UO)/U%

or
2 1y2 2 (u%) 2 2 5/2 /11 \2
uz/U® ug U <U0> o uj <U5> <Uo> ) 2 - *(1 - x¥)
2 (.2 U - U uj) - 2 3/2
u U u u u 0] * * *
2 / 0 2 2 2 2(1 - s™) (1 + )
(46)
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where equation (32) and the relations
U=Uo+s(x-x0)and Ug=UO"SXO
were used.

A plot of equation (46) is given
in figure 3. For small values of x*¥

(rig. 3(2)), (EE'/UZ)/ [@)UO/U%]

tends to be greater than 1 for positive
strain; that is, the positive strain

rate tends to increase the local trans-
verse intensity of the turbulence. For
larger values of x*, the ratio is pre-

L dominantly less than 1 except for large
0 10 20 30 1] X% * .
(a) Positive strain rates. values of s". As x" approaches in-
- finity, equation (46) shows that the
-2 -1 ratio of local transverse intensity
B with strain to that without strain goes
2= to zero.

i ";g; Comparing these results for posi-
1 i tive strain rates with those for expand-
EEE;;;;zé;'*‘ﬁz’—_——’— ing flow in a highly heated tube may be
T T worthwhile, although the heated-tube
0 2 .4 .6 .8 Lo case is more complicated because of

x* = xit-xg) radial variations of velocities and

(b) Negative strain rates.

Figure 3. - Square of ratio of local transverse inten-
sity of turbulence with strain to that without strain
as function of dimensionless axial position and di-
mensionless strain rate.

properties. Experiments by Weiland
(ref. 11; see fig. 7) and Taylor

(ref. 12) indicate that the heat trans-
fer in an expanding flow can be con-

slderably different than might be ex-
pected for a nonexpanding flow. In the upstream portion of the tubes the heat-
transfer coefficient tended to be higher than calculated for a normal entrance
region. In the middle portion the heat-transfer coefficient dipped below the
normal value, and near the exit of the longer tube it again rose. The experi-
mental curves are qualitatively similar to those in figure S(a), except that
the latter do not rise near the exit. This difference can probably be attri-
buted to the fact that the strain rate was not uniform along the length of the
tube in the experiment. The dimensionless heat-transfer coefficient or Stanton
number is closely related to the transverse turbulent intensity. In fact, some
order of magnitude arguments based on the momentum - heat-transfer analogy can
be used to show that the ordinate in figure 3 should be approximately propor-
ticnal to the square of the ratio of local Stanton number with strain to that
without strain. The results presented herein thus seem to be in qualitative
agreement with the experimental heat-transfer results. Although, as mentioned
previously, the heated-tube case is more complicated than the case considered
herein, the results appear to show, at least, that appreciable effects of axial
position on heat transfer at distances far downstream from the entrance might
occur.

For negative strain rates (fig. 3(b)), the trends are, in general, oppo-
site to those for positive strain rates; for small values of x*,

13
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Figure 4. - Dimensionless longitudinal transfer spectra associated with
mean strain at dimensionless axial position x* of 1. (Arrows point
to ordinate scales to be used for various curves.}

(ug/bé> [(u%)U /Ug] is less than 1, and for larger values of x*, it becomes
0

greater than 1. If the momentum - heat-transfer analogy is applied as it was
for positive strain rates, it is seen that negative strain rates could elther
decrease or increase the heat-transfer coefficient. Negative strain rates
occur, for instance, in the gas flowing through a cooled tube.

Turbulence Spectra

The dimensionless transfer spectra are next considered. The transfer
term in the spectral equation for the longitudinal component of energy is
plotted in figure 4 from equations (43) and (44). These curves and the suc-
ceeding ones are for a value of x* of 1. Curves for other values of x* are
qualitatively similar. For negative strain rates the transfer term is negative
for low values of K" and positive for large values, or the energy transfer is
from small to large wave numbers. The total area under each curve as K* goes
from zero to infinity is, of course, zero. The curves are similar to those
obtained for the energy transfer associated with triple correlations at higher
Reynolds numbers (ref. 13). In the case considered herein, where the triple
correlations are neglected, the energy transfer is caused by the mean strain.
For positive strain rates the energy transfer is in the opposite direction,
that is, from large to small wave numbers. The energy transfer can thus be in
either direction, depending on whether the strain rate is positive or negative.
The tiansfer spectrum associated with the transverse energy, that is, the plot
of T2, although not shown, is similar to that of Til, and the direction of
the energy transfer corresponds to that for Til.

N Dimensionless spectra of the velocity variances, or values of W;l and
Y55, are plotted in figures 5 and 6. For negative strain rates (figs. 5(a)

and 6(a)), the shapes of the spectra are changed considerably because of the
transfer of energy into the high wave number region as discussed in the pre-
ceding paragraph. The excitation of the high wave number portions of the
spectra causes them to become asymmetric, as compared with the almost symmetric
spectrum for no strain (s* = 0). In the case of wég, the curves for negative

14
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1 (a) Negative strain rates.

(b} Positive strain rates.

Figure 5. - Dimensionless longitudinal energy spectra at dimensionless
axial position x* of 1.

strain rates overlap because, although contributions to ug with strain are

generally lower than those without strain, the opposite trend occurs at high
wave numbers because of the energy transfer into that region. For positive
strain rates (figs. 5(b) and 6(b)), where the energy transfer is from large to
small wave numbers, the shapes of the spectra are affected to a lesser extent by
the energy transfer. Apparently, the effect of the energy transfer for positive
strain rates is to move the peaks of the curves to the left, particularly those
for wzz.

Figure 7 is a summary plot for energy, dissipation, and transfer spectra
for a high negative strain rate (s* = -0.99). The peaks of the energy and
dissipation spectra are quite widely separated and occur at values of k¥  of
1.3 and 10, respectively. This separation 1s similar to the separation that
occurs at high Reynolds numbers without mean strain (ref. 13) and is a con-
sequence of the asymmetrical shape of the energy spectrum. The entire energy

15
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Figure 6. - Dimensionless transverse energy spectra at dimensionless
axial position x* of 1.
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Figure 7. -~ Summary of longitudinal energy, dissipation, and transfer
spectra for large negative strain rate (-0.99) at dimensionless axial
position x* of 1. (Peak of dissipation spectrum is normalized to
same height as peak of energy spectrum.)




and dissipation regions, however, cannot be sald to be widely separated, as is
required for Kolmogoroff's hypothesis to be valid (see ref. 9) because there is
considerable overlap of the spectra. In an attempt to obtain less overlap, a
still higher value of negative strain rate (s* = -0.999) was tried. Although
the peak of the dissipation spectrum moved to about 32, while that of the
energy spectrum was unchanged, the overlap of the regions was not decreased
because ordinate values for the energy spectrum in the high wave number region
were increased. It seems that a nearly complete separation of the energy and
dissipation regions cannot be obtained with the present model.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Chio, February 17, 1965.
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APPENDIX - SYMBOLS

a defined by eq. (37)
b defined by edq. (28)
F defined by eq. (42)
Jdo constant that depends on initial conditions
P mean pressure; also, a point in the fluid
P pressure fluctuation
T defined in fig. 1

X X
Tll longitudinal transfer term
t time
U,(Up)p mean longitudinal velocity component
u velocity
X 95 + x

S
x,(xl)m_ longitudinal space coordinate
Sij Xronecker delta
6, angular coordinates (see eq. (28))
K wave number
V) viscosity
1% u/pg
p density
@ij three-dimensional Fourier transform of uiu3 defined by eq. (21)
Wij spectrun tensor defined by eq. (30)
Subscripts:
g at plane where x = O (plane of grid)
m at point Pm (see fig. 1)

18




at virtual origin of turbulence where turbulent energy would be in-
finite (It is assumed that turbulence is isotropic at xo and that
strain begins to act there.)

1 in longitudinal direction

2,3 in transverse direction

Superscripts:

~ instantaneous

! at point P' (see fig. 1)

* on dimensionless quantities defined by egs. (39), (40), and (45)
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